FACTORISATION OF QUADRATIC EXPRESSIONS 16/06/20 TUE

LINEAR AND QUADRATIC EXPRESSIONS

Linear expression: this is an expression in which the highest power (or index) of the unknown is 1. Eg x - 1, 2x + 1 and 2 - 4x.

Quadratic expression; this is an expression in which the highest power (or index) of the unknown is two. Eg x^2 + 2, $2x^2$ + 1 and 4 - x^2

EXPANSION OF ALGEBRAAIC EXPRESSIONS

The expression (x + 2)(x - 5) means $(x + 2) \times (x - 5)$. The product of the two binomials (x + 2) and (x - 5) is found by multiplying each term in the first binomial by each term in the second binomial.

EXAMPLE

Find the product of (x + 2) and (x - 5).

SOLUTION

$$(x+2)(x-5) = x(x-5) + 2(x-5)$$
$$= x^{2} - 5x + 2x - 10 = x^{2} + 2x - 5x - 10$$
$$= x^{2} - 3x - 10$$

Hence, (x + 2)(x - 5) is **expanded** as $x^2 - 3x - 10$.

EXAMPLE

Expand: (2c - 3m)(c - 4m)

SOLUTION

$$(2c - 3m)(c - 4m) = 2c(c - 4m) - 3m(c - 4m)$$
$$= 2c^{2} - 8cm - 3cm + 12m^{2}$$
$$= 2c^{2} - 11cm + 12m^{2}$$

EXAMPLE

Expand: $(3a + 2)^2 = (3a + 2)(3a + 2)$

$$3a(3a + 2) + 2(3a + 2)$$

= 9a² + 6a + 6a + 4
= 9a² + 12a + 4

COEFFICIENT OF TERMS

The coefficient of an algebraic term is the number that precedes (or comes before) the unknown. For example, in $3x^2$, the coefficient of x^2 is 3

In -2y, the coefficient of *y* is -2

 $\ln \frac{2}{3}d$, the coefficient of d is $\frac{2}{3}$

EXAMPLE

Find the coefficient of *x* in the expansion of (x + 9)(x + 3)

SOLUTION

$$(x+9)(x+3) = x^2 + 3x + 9x + 27$$
$$= x^2 + 12x + 27$$

Hence, the coefficient of *x* in the expansion of

$$(x+9)(x+3)$$
 is +12

EXAMPLE

Find the coefficient of *ab* in the expansion of

$$(5a + 2b)(4a - 3b)$$

SOLUTION

$$(5a+2b)(4a-3b) = 20a^2 - 15ab + 8ab - 6b^2$$

$$20a^2 + 8ab - 15ab - 6b^2 = 20a^2 - 7ab - 6b^2$$

Hence,

The coefficient of *ab* in (5a + 2b)(4a - 3b) is -7

EXECISE

- 1. Expand the following:
- a. (d+3)(d-7)
- b. $(m + 4n)^2$
- c. (4m n)(3m 3n)
- d. $(2c 3d)^2$
- 2. Find the coefficient of;
- a. *d* in the expansion of (d 8)(d + 3)
- b. u in the expansion of (4u 5)(2u 7)
- c. ab in the expansion of (5a + 2b)(5a 2b)

FACTORISATION OF QUADRATICEXPRESSIONS17/06/20WED

QUADRATIC EXPRESSIONS

Quadratic expression; this is an expression in which the highest power (or index) of the unknown is two. Eg x^2 + 2, $2x^2$ + 1 and 4 - x^2

Since $(x + 2)(x - 6) = x^2 - 4x - 12$, then (x + 2) and (x - 6) are the factors of $x^2 - 4x - 12$.

A quadratic expression may **not** have factors. In arithmetic, 13 is called **prime** since it has only two factors; 1 and itself. Similarly, $x^2 + 2x - 6$ has no factors (other than itself and 1)

To factorize a quadratic expression is to express it as a product of its factors. Thus $x^2 - 4x - 12$ factorizes to become(x + 2)(x - 6). The example below shows the steps to be followed when factorizing quadratic expressions.

EXAMPLE

Factorize the quadratic expression: $x^2 + 7x + 10$

SOLUTION

The problem is to fill the brackets in the statement

$$x^2 + 7x + 10 = ()()$$

1st step: *x* appears in each bracket since their product always gives the first term x^2 :

(x)(x)

 2^{nd} step: The product of the last terms in the two brackets must be equal to the last term +10. Number pairs which have a product of +10 are:

- a. +10 and +1
- b. +5 and +2
- c. -10 and -1
- d. -5 and -2

3rd step: the sum of the last terms in the two brackets must be equal to the middle number, in this case +7.

Adding the number pairs above ,we have

a.
$$(+10) + (+1) = +11$$

b.
$$(+5) + (+2) = +7$$

c. (-10) + (-1) = -11d. (-5) + (-2) = -7

Of these, only *b* gives +7. Thus,

$$x^2 + 7x + 10 = (x + 5)(x + 2)$$

Note:

- 1. The answer can be checked by expanding the brackets.
- 2. The order of the brackets is **not** important. (x + 5)(x + 2) = (x + 2)(x + 5)

EXAMPLE

Factorize; $d^2 + 11d + 18$

SOLUTION

 1^{st} step: $d^2 + 11d + 18 = (d)(d)$

2nd step: find two numbers that their **product** is +18 and their **sum** is the middle number +11. Considering positive factors only, we have

	factors of +18	sum of factors
a.	+1 and +18	+19
b.	+2 and +9	+11
c.	+3 and +6	+9

Of these, only *b* gives the required result. Thus,

 $d^{2} + 11d + 18 = (d + 2)(d + 9)$

The above method is called **trial and improvement method**

EXAMPLE

Factorize the following:

- 1. $t^2 10t + 24$
- 2. $x^2 + 2x 15$
- 3. $x^2 4x 12$

SOLUTION

1. 1^{st} step: $t^2 - 10t + 24 = (t)(t)$ 2^{nd} step: find two numbers that their **product** is +24 and their sum is -10. Since the 24 is positive and the 10 is negative, consider negative factors only.

	factors of +24	sum of factors
a.	-1 and -24	-25
b.	-2 and -12	-14

c. -3 and -8 -11

d. -4 and -6 -10

Of these, only *d* gives the required result. Thus, $t^2 - 10t + 24 = (t - 4)(t - 6)$

2. 1st step: $x^2 + 2x - 15 = (x)(x)$

2nd step: Find two numbers that their **product** is -15 and their sum is +2. Since the 15 Is negative and the 2 is positive, list the possible pairs and their sums.

factors of -15		sum of factors
a.	+1 and -15	-14
b.	+3 and -5	-2
c.	+5 and -3	+2
d.	+15 and -1	+14

Of these, only *c* gives the required result. Thus,

 $x^{2} + 2x - 15 = (x + 5)(x - 3)$ 4. 1st step: $x^{2} - 4x - 12 = (x - 3)(x - 3)$

 2^{nd} step: Find two numbers that their **product** is -12 and their sum is -4. Since the 12 Is negative and the 4 is negative, list the possible pairs and their sums. factors of -12 sum of factors

1401015 01-12		Sulli of factors		
a.	-12 and +1	-11		
b.	-6 and +2	-4		
c.	-4 and +3	-1		
d.	-3 and +4	+1		
e.	-2 and +6	+4		
f.	-1 and +12	+11		
Of these, only <i>b</i> gives the required result. Thus,				
$x^2 - 4x - 12 = (x - 6)(x + 2)$				

EXERCISE

Factorize the following quadratic expressions:

- 1. $a^2 + 8a + 15$
- 2. $b^2 8b + 7$
- 3. $d^2 9d + 14$

4. $c^2 - 8c - 20$

5. $f^2 + 6f - 7$

FACTORISATION OF QUADRATICEXPRESSIONS18/06/20THUR

PERFECT SQUARES

An expression is said to be a perfect square if it can be expressed as a square of another expression.

$$(a+b)^{2} = (a+b)(a+b)$$
$$= a^{2} + ab + ab + b^{2}$$
$$= a^{2} + 2ab + b^{2}$$
$$\therefore (a+b)^{2} = a^{2} + 2ab + b^{2}$$

Similarly,

$$(a-b)^2 = (a-b)(a-b)$$
$$= a^2 - ab - ab + b^2$$
$$= a^2 - 2ab + b^2$$
$$\therefore (a-b)^2 = a^2 - 2ab + b^2$$

NOTE

- The square of a sum of two quantities is equal to the sum of their squares plus twice their product.
- The square of a difference of two quantities is equal to the difference of their squares minus twice their product.

EXAMPLE

Expand the following:

a.
$$(3m + 7n)^2$$

b. $(4u - 5v)^2$

SOLUTION

a.
$$(3m + 7n)^2 = (3m)^2 + 2(3m)(7n) + (7n)^2$$

= $9m^2 + 42mn + 49n^2$
b. $(4u - 5v)^2 = (4u)^2 - 2(4u)(5v) + (5v)^2$
= $16u^2 - 40uv + 25v^2$

The expansion of a perfect square can be used to shorten the working when squaring numbers

EXAMPLE

Expand:

a. 104²

b. 97²

SOLUTION

a.
$$104^2 = (100 + 4)^2$$

= $100^2 + 2(100)(4) + 4^2$
= $10000 + 800 + 16$
= 10816
b. $97^2 = (100 - 3)^2$
= $100^2 - 2(100)(3) + 3^2$
= $10000 - 600 + 9$
= 9409

EXAMPLE

Factorize the following:

a.
$$h^2 + 12h + 36$$

b. $25h^2 - 30hk + 9k^2$

SOLUTION

a. h^2 is the square of *h*, 36 is the square of 6 and 12*h* is twice the product of 6 and *h*. Thus,

$$h^{2} + 12h + 36 = (h + 6)(h + 6)$$

= $(h + 6)^{2}$

- b. $25h^2$ is the square of 5h, $9k^2$ is the square of 3kand 30hk is twice the product of 5h and 3k
- c. $\therefore 25h^2 30hk + 9k^2 = (5h 3k)^2$

DIFFERENCE OF TWO SQUARES

Consider the expression (a + b)(a - b)

$$(a+b)(a-b) = a(a-b) + b(a-b)$$
$$= a^{2} - ab + ab - b^{2}$$
$$= a^{2} - b^{2}$$
$$\therefore (a+b)(a-b) = a^{2} - b^{2}$$

The expression $a^2 - b^2$ is called **difference of two** squares.

Hence,

The difference of the squares of two quantities is equal to the product of their sum and their difference.

EXAMPLE

Simplify each of the following:

a.
$$(4x + 3y)(4x - 3y)$$

b. (2p+1)(2p-1)

SOLUTION

a.
$$(4x + 3y)(4x - 3y) = (4x)^2 - (3y)^2$$

= $16x^2 - 9y^2$
b. $(2p + 1)(2p - 1) = (2p)^2 - (1)^2$
= $4p^2 - 1$

EXAMPLE

Factorize the following:

a. $y^2 - 4$ b. $36 - 9a^2$ c. $25m^2 - 16n^2$ d. $5a^2 - 45$

SOLUTION

a.
$$y^2 - 4 = (y)^2 - (2)^2$$

 $= (y+2)(y-2)$
b. $36 - 9a^2 = (6)^2 - (3a)^2$
 $= (6+3a)(6-3a)$
c. $25m^2 - 16n^2 = (5m)^2 - (4n)^2$
 $= (5m+4n)(5m-4n)$
d. $5a^2 - 45 = 5(a^2 - 9)$
 $5(a^2 - 3^2)$
 $= 5(a+3)(a-3)$

EXAMPLE

Using difference of two squares, evaluate:

a. $8.9^2 - 1.1^2$ b. $99^2 - 1$ c. $173^2 - 127^2$

SOLUTION

a.
$$8.9^2 - 1.1^2 = (8.9 + 1.1)(8.9 - 1.1)$$

 $= 10 \times 7.8$
 $= 78$
b. $99^2 - 1 = (99 + 1)(99 - 1)$
 $= 100 \times 98$
 $= 9\,800$
c. $173^2 - 127^2 = (173 + 127)(173 - 127)$
 $= 300 \times 46$
 $= 13\,800$

EXERCISE

- 1. Expand the following:
- a. $(2a + 3d)^2$
- b. $(3b 5c)^2$

- 2. Find the squares of the following:
- a. 103
- b. 996
- 3. Factorize the following:
- a. $x^2 + 6xy + 9y^2$
- b. $9a^2 24ab + 16b^2$
- 4. Factorize the following:
- a. $4m^2 n^2$
- b. $36a^2 49b^2$
- c. $5c^2 45d^2$
- 5. Find the value of the following:
- a. $118^2 18^2$
- b. $1004^2 16$