FACTORIZATION 09/06/20 TUE

A **number** or **expression** is called a **factor** of another if it divides the other without any remainder. Factorization is the act of representing expressions as a product of its factors.

Removing brackets (revision)

EXAMPLE

Remove brackets from:

- a. 3(2x y)
- b. (3a + 8b)5a
- c. -2n(7y 4z)

SOLUTION

a.
$$3(2x - y) = 3 \times 2x - 3 \times y$$

= $6x - 3y$

b.
$$(3a + 8b)5a = 3a \times 5a + 8b \times 5a$$

= $15a^2 + 40ab$

c.
$$-2n(7y - 4z) = (-2n) \times 7y - (-2n) \times 4z$$

= $14ny - (-8nz)$
= $-14ny + 8ny$

COMMON FACTORS

EXAMPLE

Find the HCF of 6xy and $18x^2$.

SOLUTION

$$6xy = 6 \times x \times y$$
$$18x^2 = 6 \times 3 \times x \times x$$

∴ the HCF of 6xy and $18x^2$ is $6 \times x = 6x$

COMMON FACTORS OF BINOMIAL EXPRESSIONS

A binomial expression has **two** terms. To factorize an expression is to write it as a product of its **factors**.

EXAMPLE

Factorize the following binomial expressions:

- a. 9a 3z
- b. $5x^2 + 15x$
- c. $2mh 8m^2h$

SOLUTION

a. The HCF of 9a and 3z is 3.

$$9a - 3z = 3(3a - z)$$

b. The HCF of $5x^2$ and 15x is 5x

$$5x^2 + 15x = 5x(x+3)$$

c. The HCF of 2mh and $8m^2h$ is 2mh.

$$2mh - 8m^2h = 2mh(1 - 4m)$$

EXERCISE

- 1. Remove brackets from the following:
- a. 5p(9r 8s)
- b. -6a(2a 7b)
- 2. Find the HCF of the following:
- a. 8pq and $24p^2$
- b. $10ax^2$ and $14a^2x$
- 3. Factorize the following binomial expressions:
- a. 5am 20bm
- b. 3dh + 15dk

FACTORIZATION 10/06/20 WED

COMMON FACTORS WITH LARGER EXPRESSIONS EXAMPLE

Factorize the following:

- a. 2x(5a + 2) 3y(5a + 2).
- b. $2d^3 + d^2(3d 1)$
- c. $(a+m)(2a-5m)-(a+m)^2$
- d. (x-2y)(z+3)-x+2y

SOLUTION

a. In the given expression, (5a + 2) is common. Thus

$$2x(5a + 2) - 3y(5a + 2) = (5a + 2)(2x - 3y)$$

b. In the given expression, d^2 is common. Thus,

$$2d^{3} + d^{2}(3d - 1) = \frac{d^{2}}{2}[2d + (3d - 1)]$$
$$= d^{2}[2d + 3d - 1]$$
$$= d^{2}(5d - 1)$$

c. In the given expression, (a + m) is common. Thus,

$$(a+m)(2a-5m) - (a+m)^{2}$$

$$= (a+m)[(2a-5m)$$

$$- (a+m)]$$

$$= (a+m)[2a-5m-a-m]$$

$$= (a+m)(a-6m)$$

d. Notice that -1 is a factor of the last two terms. Thus, the given expression can be written as:

$$(x-2y)(z+3) - x + 2y$$

= $(x-2y)(z+3) - 1(x-2y)$

In the above expression, (x - 2y) is common. Thus,

$$= (x - 2y)[(z + 3) - 1]$$

= (x - 2y)(z + 3 - 1)
= (x - 2y)(z + 2)

SIMPLIFYING CALCULATIONS BY FACTORIZATION

EXAMPLE

By factorizing, simplify: $79 \times 37 + 21 \times 37$

SOLUTION

37 is a common factor of 79×37 and 21×37 .

$$79 \times 37 + 21 \times 37 = \frac{37}{79} + 21$$

= 37×100
= 3700

EXAMPLE

Factorization the expression: $\pi r^2 + 2\pi rh$. Hence find the value of $\pi r^2 + 2\pi rh$ when $= \frac{22}{7}$, r = 14 and h = 43.

SOLUTION

$$\pi r^{2} + 2\pi r h = \pi r (r + 2h)$$
When $\pi = \frac{22}{7}$, $r = 14$ and $h = 43$

$$\pi r^{2} + 2\pi r h = \pi r (r + 2h)$$

$$= \frac{22}{7} \times 14(14 + 2 \times 43)$$

$$= 22 \times 2(14 + 86)$$

$$= 44 \times 100$$

$$= 4400$$

EXERCISE

- 1. Factorize the following:
 - a. $a^2(5a-3b)-3a^3$
 - b. (2u-3v)(3m-4n)-(2u-3v)(m+2n)
 - c. (2a-3b)(c+d)-2a+3b
- 2. By factorizing, simplify the following:

a.
$$\frac{8}{13} \times 125 + \frac{5}{13} \times 125$$

b.
$$762 \times 87 - 562 \times 87$$

- 3. Factorize the expression:
 - a. $\pi r^2 h + \frac{1}{3} \pi r^2 H$.
 - b. Hence, find the value of the expression when $\pi = \frac{22}{7}$, r = 3, h = 10 and H = 12.

FACTORIZATION

11/06/20 THUR

FACTORIZATION BY GROUPING

EXAMPLE

Factorize: cx + cy + 2dx + 2dy

SOLUTION

The terms cx and cy have c in common. Also, the terms 2dx and 2dy have 2d in common. Grouping in pairs this way,

$$cx + cy + 2dx + 2dy = (cx + cy) + (2dx + 2dy)$$
$$= c(x + y) + 2d(x + y)$$
$$= (x + y)(c + 2d)$$

EXAMPLE

Factorize: 3a - 6b + ax - 2bx

SOLUTION

$$3a - 6b + ax - 2bx = 3(a - 2b) + x(a - 2b)$$
$$= (3 + x)(a - 2b)$$

EXAMPLE

Factorize: $2x^2 - 3x + 2x - 3$

SOLUTION

$$2x^{2} - 3x + 2x - 3 = x(2x - 3) + 1(2x - 3)$$
$$= (2x - 3)(x + 1)$$

EXAMPLE

Factorize: $2am - 2m^2 - 3ab + 3bm$

SOLUTION

$$2am - 2m^2 - 3ab + 3bm = \frac{2m(a-m) - 3b(a-m)}{a-m}$$
$$= (a-m)(2m-3b)$$

EXAMPLE

Factorize: $cd - de + d^2 - ce$.

SOLUTION

 d^2 and ce have no common factor, hence regroup the given terms.

Either

$$cd - de + d^2 - ce = cd + d^2 - ce - de$$
$$= d(c+d) - e(c+d)$$
$$= (c+d)(d-e)$$

0r

$$cd - de + d2 - ce = cd - ce + d2 - de$$
$$= c(d - e) + d(d - e)$$

$$(c+d)(d-e)$$

EXAMPLE

Factorize: 2sru + 6tru - 4srv - 12trv

SOLUTION

2r is a factor of every term in the given expression.

$$2sru + 6tru - 4srv - 12trv = \frac{2r}{su} + 3tu - 2sv - 6tv$$

$$= 2r\{u(s+3t) - \frac{2v}{s} + 3t\}\}$$

$$= 2r(s+3t)(u-2v)$$

EXERCISE

Factorize the following:

- 1. cx dx + 2cy 2dy
- 2. 2mh 3nh 3nk + 2mk
- 3. $mn 6pn + 3pm 2n^2$
- $4. \quad 2amu + 2anu 2amv 2anv$
- 5. $2d^2x + 4dx^2y 3dy 6xy^2$